CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2013 series

9702 PHYSICS

9702/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2		Mark Scheme		Syllabus	Paper	·
			GCE AS/A LEVEL – M	ay/June 2013	9702	21	
1	(a)		returns to its original length e load is removed	(not 'shape')		M1 A1	[2]
	(b)	energy /	N m / kg m 2 s $^{-2}$ and volume m 3 volume: kg m 2 s $^{-2}$ / m 3 volume: kg m $^{-1}$ s $^{-2}$			C1 M1 A0	[2]
	(c)	<i>E</i> : kg m s		efactory conclusion to sl	now C has	B1 M1	
		no units	Milo. Rgiii 3 – Li io unita / Sati	stactory correlation to si	low o nas	A1	[3]
2	(a)		the property of a body resisting c n a body / measure of inertia to ch		itity of	B1	
		•	s the force due to the gravitationa ational force	I field/force due to gravi	ty	B1	[2]
		Allow 1/2	2 for 'mass is scalar weight is vec	ctor'			
	(b)		w vertically down through O sion forces in correct direction on	rope		B1 B1	[2]
		θ	weight = mg = 4.9 × 9.81 (= 48.07 s) sin θ = mg θ = 44.(1)° use of cos or tan 1/3 only) scale drawing allow ± 2	2°	C1 C1 A1	[3]
		2 . 7	$\theta = 69 \cos \theta$ = 49.6 / 50 N	scale drawing 50 ±2 (2	/2) 50 ±4 (1/2	C1) A1	[2]
		full r	ect answers obtained using scale marks in 1. then sin in 2. (2/2)	e diagram or triangle of f	orces will score	•	
3	(a)	loss in potential energy due to decrease in height (as P.E. = mgh) gain in kinetic energy due to increase in speed (as K.E. = $\frac{1}{2} mv^2$)			(B1) (B1)		
		special case 'as PE decreases KE increases' (1/2) increase in thermal energy due to work done against air resistance loss in P.E. equals gain in K.E. and thermal energy		(B1) (B1) max. 3	[3]		

Page 3		ge 3	Mark Scheme	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2013	9702	21	
	(b)	(i) kine	tic energy = $\frac{1}{2} mv^2$ = $\frac{1}{2} \times 0.150 \times (25)^2$ = $46.875 = 47 \text{ J}$		C1 C1 A1	[3]
		(ii) 1.	potential energy (= mgh) = 0.150 × 9.81 × 21 loss = KE – mgh = 46.875 – (30.9) = 15.97 = 16 J		C1 C1 A1	[3]
		2.	work done = 16 J work done = force × distance F = 16 / 21 = 0.76 N		C1 A1	[2]
4	(a)	pressure	e = force / area (normal to force)		A1	[1]
	(b)	molecule (force ex	es/atoms/particles in (constant) random/haphazard motions have a change in momentum when they collide with the terted on molecules) therefore force on the walls e to average force from many molecules/many collisions	<u>ne walls</u>	B1 M1 A1 A1	[4]
	(c)		ollision when <u>kinetic</u> energy conserved ture constant for gas		B1 B1	[2]
5	(a)	coheren path diff	verlap / meet / superpose ce / constant phase difference (not constant λ or frequence rence = 0, λ , 2λ or phase difference = 0, 2π , 4π rection of polarisation/unpolarised	асу)	(B1) (B1) (B1) (B1) max. 3	[3]
	(b)	$\lambda = v/f$ $f = 12 \times \lambda = 3 \times 1$ $= 0.02$	10^{8} / 12 × 10 ⁹ (any subject)		C1 C1 M1 A0	[3]
	(c)	5 maxim	minima or maxima between O and P aa / 6 minima between O and P		B1 B1	[0]
	(d)	slits mad slits put (not ju	de narrower closer together st 'make slits smaller') ing the slits M1 and explanation of axes of rotation A1		B1 B1 B1	[3]

	Page 4	Mark Scheme	Syllabus	Paper	
		GCE AS/A LEVEL – May/June 2013		21	
6	(a) (i) ch	emical to electrical		B1	[1]
	(ii) ele	ectrical to thermal / heat or heat and light		B1	[1]
	(b) (i) (P)	$_{3}$ =) EI or $I^{2}(R_{1} + R_{2})$		A1	[1]
	(ii) (P	$_{R}$ =) $I^{2}R_{1}$		A1	[1]
		/ A or clear from the following equation		B1	
	ratio =	$I^2R_1/I^2R_2 = \frac{\rho l/\pi d^2}{\rho(2l)/\pi(2d)^2}$ or R_1 has $8 \times$ resistance of R_2		C1	
		= 8 or 8:1		A1	[3]
	\ · /	I/R or E^2/R the same) hence ratio is 1/8 or 1:8 = 0.125 (allow ecf from	om (c))	C1 A1	[2]
7	` '	jority/most went straight through e deviated by small angles		B1	
		small proportion/a few were deviated by large angles ngles described as < 10° and large angles described as >	•90°	B1 B1	[3]
	mass <u>a</u>	f the atom is empty space/nucleus very small compared vand charge concentrated in (very small) nucleus links made with statements in (a)	vith atom	B1 B1 B1	[3]